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GROUP-KINETIC THEORY OF TWO-PHASE TURBULENCE

C.M. Tchen

Department of Mechanical Engineering
City College of New York
New York, N.Y. 10031, USA

Abstract

The two phases are governed by two coupled systems
of Navier-Stokes equations. The couplings are nonlinear.
These equations describe the microdynamical state of tur-
bulence, and are transformed into a master equation. By
scaling, a kinetic hierarchy is generated in the form of
groups, representing the spectral evolution, the diffusi-
vity, and the relaxation. The loss of memory in formula-
ting the relaxation yields the closure. The network of
sub-distributions that participates in the relaxation is
simulated by a self-consistent porous medium, so that the
average effect on the diffusivity is to make it approach
equilibrium. The kinetic equation of turbulence is derived.
The method of moments reverts it to the continuum. The
equation of spectral evolution is obtained, and the trans-
port properties (eddy diffusivity and eddy viscosity) are
calculated. In inertia turbulence, the Kolmogoroff law
k™3 “for the weak coupling and the spectrum k' for the
strong coupling are found. The density fluctuations have

similar spectra. The numerical coefficients are determined

analytically.



1. Introduction

The motion of small particles in an incompressible
turbulent fluid is important for many applications (Soo,
1967), and from the fundamental point of view has at-
tracted the attention of many authors as a statistical

problem of many bodies. The earliest treatment of sus-

pension (Tchen, 1947) used the Langevin equation (Langevin,

1908)
dv (t) ~ o~
=t X Im = X (1)

for the motion of a single particle, where i(t) is the
velocity fluctuation, a, is the coupling coefficient, and
iv(t) is the driving force. A second Langevin equation
;ay also be written for the Lagrangian representation of

the modified fluid.

The driving force is due to the drag that is experi-
enced by the particle from the moving fluid. It is pro-

portional to the fluid velocity u(t) as avﬁ(t), and may

include a Basset memory. The interaction of many particles

calls for a system of many coupled Langevin equations
(Herczyfiski and Piefikowska, 1980; Mazur, 1982; Deutch

and Oppenheim, 1971; Ermak and McCammon, 1978; Ramshaw,

1979).

From the Langevin equation with a drag and a memory,

Tchen (1947) calculated the Lagrangian correlations of
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velocities and found the equality

(-4 o
fdt <x‘z’(t)\z(t-t » T/dr(?i(t)ﬁ(t—")) . (2)

0 0

A fluctuating function

0= 0 + 0 (3)

can be decomposed into an ensemble average

0 =< (4)
and a fluctuation ( ). The operators

7~ — -~

A = A + A (5)

may be used for the scaling, where A=1 is the unit opera-

tor.

By the use of the evolution operators
A ~
Uv(t,t-T ) and Uu(t,t-t') (6)

to specify the trajectories of the v-fluctuation and the

u-fluctuation, respectively, we can write the Langevin

A d

equation (1) and the equality (2) as




av (t)

= + o(v\:(t) = AUV(t,t-'C)i(v(t-t) ’ (7)

and
0 d{l’(t'f)mv(t't't)‘i‘t‘t> = fdr<ﬁ(t,x)'iuv(t,t-t )"{1(1:-7:9 (8)
0 - - - /

The fluctuating operation A makes the quantity which
follows to be a fluctuation. The force zv(t-r) in (7)

is registered at the time t -t and at the position g(t-r)
by an observer riding on the particle that follows the
perturbed trajectory of the“i—motion, while at time ¢,

the force is

Xv(t) = Xv(t,:c) . (9)

- -

The integrals

(-4
j;dc (f(t,i)iﬁv(t,t-r )V (E-T ) ) (10)
and
@Q
fodl‘ <\:(t,>:)AUu(t,t—‘C)i(t-—‘C )> (11)

can be called diffusivities. The correlation functions are
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calculated from the velocity fluctuations at the two in-
stants along their own trajectories, as specified by the

evolution operators (6).

With this distinction between
A ~ : A
Uv(t,t—l‘)u(t-t) and Uu(t,t—T)u(t-T ), (12)

the quantity

(e /
de.' G(t,x)xa (t,t-T)U(t-T) . (13)
AT, 0%, i(e-T))

as formed by the é—fluctuations along the iftrajectory,
is not a diffusivity as a property, but is a functional
of the diffusivity (11). In this sense, the Langevin

equation (7) and the kinematic relation (8) are in fact
nonlinear. The nonlinearity arises from the transforma-

tion between the evolution operators (6).

The diffusivity in the operator form calls for the
need for a Lagrangian-Eulerian transformation (Pismen and
Nir, 1978; Reeks and McKee, 1984; Gitterman and Steinberg,
1980; Gouesbet et al., 1984). It soon becomes clear that
without the dynamical knowledge of turbulence, the trans-
formations between the Lagrangian and Eulerian representa-
tions and between the two evolution operators can not be

successful.



The treatment of many interacting particles and the
transport theory of the stochastic system belong in a
natural way to the many-body statistical mechanics (Bogo-
liubov, 1962). Yanko (1980) has suggested Bogoliubov's
method for treating the suspension of particles. The
method is best suited for a system of large numbers of particles
that interact through their own potential of interaction,
e.g. the Coulomb potential in plasmas, but is not well-
developed for the interaction among the particles in a
flowing fluid. It would be more pertinent to describe
the interaction by a system of many Langevin equations.

for the many particles embedded in the incompressible

flow.

If we are not concerned with the microdynamics of
the interactions and the microhydrodynamics of the in-
trinsic viscosity in our theory of turbulence, we can
choose an effective friction constant, such as the Darcy
damping for the ensemble of Langevin equations treated
as a porous medium. Through the transformation into the
Fokker-Planck equation, and the subsequent reduction in-
to the continuum, we will obtain two systems of Navier-
Stokes equations for the two phases, with the effective
coupling constants as given parameters. These systems

describe the microdynamical state of two-phase turbulence.

For the development of a theory of turbulence, the

direct hydrodynamic method has shown the difficulties of
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the closure of hierarchy from the start of the problem
(Genchev and Karpuzov, 1980; Elgobashi and Abou-Arab,
1981) . The statistical method by Bogoliubov's approach
with the closure at the triplet distribution seems un-
satisfactory for turbulence. For this reason, we develop

a group-kinetic method to derive the kinetic equation for
the distribution function in the macro-group. The closure
is found by memory loss. We investigate the eddy viscosity

and analyze the spectral structure of turbulence.

It is generally believed that a small amount of
particles present in the fluid will drastically reduce
the drag of the fluid. The laboratory measurement of the
turbulent intensity indeed shows a decrease of fluid tur-
bulence with the increasing concentration of particles
(Elgobashi and Abou-Arab, 1983). Other measurements of
the energy spectrum in the inertia turbulence confirm the
Kolmogoroff law k'y3, but show unexpectedly an increased
spectral level (Goldschmidt, 1972). To lift this paradox,
we investigate the inertia turbulence with strong coupling
and weak coupling. In the direction of increasing wave
numbers, our results show that the spectral law k' for

+ strong coupling precedes the spectral tail of power

law x /3

for weak coupling. The power law k' is reduced
by the particles and the power law k™3 is increased by
the particles. The tendency of this shift from reduction

to increase is indicated by the lidar measurement in the
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atmosphere before and after the rain (Gurvich and Pokasov,

1972).

2. Fundamental equations of two-phase flow

We consider two fluids, called the two-phases v and
u. Both fluids are governed by the Navier-Stokes equations

with coupling, in the form

A A ~ -~ P Py Y

rv( bt+:7-V yv = —va + yvnv(li - Z) (14)
) 2T (15)

R fvv = 0,

for the velocity ¥, the pressure p,, and the density 3,

and

{’ (}t+ f1°V)u=-Vpu-Yur?u(G-\\r) (16)
Fal A
A (17)
Bt ?\1 + Y" N n® = 0

for the velocity G, the pressure ﬁu, and the density Bu.

The coupling constants are YyrYye

By definition, the mass densities

Y = m.n ’ ?u = m.n
can be written as the product of masses m,, m , with the
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number densities fi,, . The kinematic viscosities v,, v,
are not written here since they are negligible as com-
pared with the eddy transport properties, but will be in-

cluded in the energy considerations.

The two fluids are incompressible, but the coupling
depends on the density. In investigations of this kind,
we allow for the variation of density insofar as it modi-
fies the coupling only. This procedure is called the
Boussinesq approximation (Chandrasekhar, 1983). Thus, in
egs.(14)-(17) we replace Bv,ﬁu by their stationary values
p,s P, @nd reduce the hydrodynamic systems into the follow-

ing:

(1) for the v-phase

N7 1S = %
()t+ ve v +c(v)1r fv (19)
A
- v = 0 (20)
A
PN 2"
()t+ : v N, = \)N,v VN, (21)
with
) _ A »~ A ‘/\ 3 _ 1 A (22)
X,=E, +<u , 'E_ = }-;va.
-~ R - - v
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(ii) £for the u-phase

A A ~ A
(3 o+ WY+ = Xy (23)
A
Yu = 0 (24)
D) 2Ty v 23 25
( t+ ti“)Nu = N,quu ’ ( )
with
A - A "~ l N
xu = Eu + .o Eu = --F:—Z'pv . (26)
The coupling coefficients
la) - ~ A A
XEAN o, X, =« N (27)

fluctuate by the fluctuating number-densities, and the

stationary coupling coefficients are
£, = Y, /m, 4 %= )’u/mu . (28)
The normalized densities

=n /n (29)

2>
<
il
¢
3
<
=z
[
|
[
o
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are the densities fi,,fi, normalized by the stationary values
n,, n,. The stationary quantities are written without the

symbols (3),

It is to be remarked that the Navier-Stokes equations,
in the form (14)-(17) or (19)-(26), are valid for two gases
of number-densities (29) or for two liquids of densities
(18). In the special case of the suspension of particles
in a liquid, where the coupling is due to the friction of

the particles only, we have the simplification
A A
N = N ’ (30)

without altering the form of the basic equations (19)-(26).

In view of the symmetry, it suffices to treat the
first system and omit the subscript v, unless needed for
clarity. The results will equally apply to the second

system by interchanging v and u.

3. Group-kinetic method
3.1. Master equation

The inhomogeneous partial differential equation (14)
can be transformed into the homogeneous partial differen-

tial equation
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(3, + WE = o , (31)

called the master equation for the distribution function
f(t,x,v), with the differential operator

T = v.V+ & + 333 (32)
and the notations
=08, =0y (33)
For establishing the self-consistency between the

master equation and the hydrodynamics of the two phases

under the Boussinesq approximation, we write

F(t,x,v) =9 [v - ?r(t,x)] (34)

-~ -

and

-

%(t,X,V) = 'It](tlx)g [-V—G(tlx)] ’ (35)

for (19) and (21), respectively.
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3.2 Group-scaling

The master equation describes the microdynamical state
of turbulence in too many minute details. A smoothing pro-
cedure is necessary for a statistical treatment. By the

Reynolds decomposition (3), we divide

H>
]
)
+

£ (36)

into an ensemble average f and a fluctuation f. The group-

scaling by

A = 2 + a (37)

A' = A1 + a" (38)
decomposes the fluctuation

~ [}

£f = £ + £ (39)

f' = £ + f£" . (40)

The micro-group is re-decomposed into the first-order

group f'! and the group
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£o= £@p (3 4., (41)

of sub-distributions.

The three groups
£ , £ , f£" (42)

represent the three transport processes of evolution, trans-
port property, and relaxation. The evolution of f% occurs

in a medium that offers a transport property as shaped by
the micro-fluctuation f£'. Subsequently, the transport
property approaches its equilibrium (t—+«) by a relaxation
from £". The relaxation is a complicated process obtained

by following the perturbed trajectory and by closing the
memory chain. The distinction of the transport processes
provides a physical demarcation in the groups. Mathe-
matically, the groups are sets of Fourier components, soO

that the intensities of the field fluctuations
[ k ® 2 @
<x 2) =2[ dktG(kl) ,<X'a= l dk"G(k") ,(X" ):2{ dk'"G(k'") (43)
had 0 [5S - 1]

are portions of the spectral distribution G(k) within the

wave number intervals
(0,k), k,»), and (k",»), (44)

respectively.
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The three groups of increasing orders by the scalings
A ,A ,na (45)

do not refer to decreasing magnitudes, but to decreasing

coherence. Thus, the decreasing times of correlation, by

the inequalities

o h ]
T, >, >T, (46)
will introduce the quasi-homogeneity and quasi-stationarity

at successive group levels to limit the interactions to

nearest-neighbours,

3.3 Hierarchy and closure

By A’ and A!, we scale the master equation (31) into

the following equations for the evolution of groups:

°= 1.1

()t+A°£)f° -LF - ALE (47)

- tt@sg) - alLPe@ L. (48)

®) t+ALEa) £l
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and the sequence continues in a hierarchy. The
sub-distributions form a global network (41) 1like a

lattice.

On the left hand sides of (47) and (48), the

advections can be written as

0O A 9 ] o [} 0

A Lf = Lo f -aA L f£ (49)

atntel = npoet oAl el (50)
The notations

P 0 - 0 1

Lo.=_L+L,Ll§L+L + L (51)
are used. By the approximation of nearest-neighbour
interactions, the last terms

0 o °
-2t oz o-an g s‘(;'{f"} (52)
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L@@ ¥ pliege = {flf, (53)

in (47) and (48) are called collision and sub-collision,

respectively. Since

&1y - e} (54)

are operators in v, the memory continues.

-~

Physically, the evolution of f° proceeds in a col-
lisional environment where the fluctuations by £f' can
shape an eddy viscosity. For its approach to equilibrium,
this transport property will need a relaxation, where we
must find a way to cut the memory and thereby to close

the hierarchy.

By an inspection of the chain of collisions in (52)
and (53) and of the linkage among the sub-distributions
in the network (41), we visualize that the memory is at
the same time essential for maintaining a non-Markovian
behaviour in the kinetic equation of turbulence, and
should ultimately vanish for obtaining the closure and
the irreversibility. It can be seen that the memory con-
tinues through the v-dependence among the sub-distribu-
tions linked in the network (41). In fact, it is the
averaged statistical effects that play the role of relaxa-

tion and controls the evolution of f!. Consequently, we
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can replace the network by a porous medium that offers a

friction (3", called the Darcy damping (Brinkman, 1947).

This amounts to replacing C"{} in the role of operator

by &" as a function independent of v, i.e.

i} = &

This function will be determined self-consistently.

(55)

In so

doing, the sub-distributions in the network lose their

individuality as v-dependent and thereby are not capable

of linking the memory in the homogeneized lattice that

turns into a porous medium.

4. Kinetic equation of turbulence

By substituting for the sub-collision (55), we trans-

form (48) into the form

(3 oalp el = - LB +e £t
or

OalfoE = - hEE)
with the differential operators

A
A A A A
L = vV + + X-} and [,=L-—C,

- . —

1-18
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The two operators differ by the Darcy damping 6" for

representing the porous medium at large.

It is to be remarked that the inhomogeneous equation
(57) can be integrated by means of a kernal.tl(t,t-—r),
called the evolution operator, that satisfies the homo-

geneous equation

[—?— + 'C (tl;}a(trtl) = 0, (59)

2t

with the condition‘&(t,t)=]ﬂ The solution 1is

A

t A
U(tftl) = exXp [—/t dt'l 8 (tl)] . (60)
1

By means of this operator, we integrate (57) to get

the distribution

t N
£t = -/ ag At Y(e, =T ){Ll(f+f° )} , (61)
0
and calculate the collision (52) as
[+ [
B'{f } 2 - apled

(62)

i
oS

ar e, x,v) Alﬁw,t-r){Ll(éf’)} :
0 -y

A final substitution into (47) yields the kinetic equation:
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o _o- (.0
(bt+Lo)f =-LEf + @ {f (trt)} . (63)

This equation differs from the Bogoliubov equation and
its generalization to include the memory (Tchen, 1959),
and will serve as a basis for deriving the transport

properties and the spectral structure without the need

of the accompanying pair-distribution function.

It is worth noting the following properties of the

collision B'{f°}:

(1) As a collision operator {G'{ } is deterministic
and stationary, so that the upper limit of integration in
(62) can be replaced by = without altering the value of

the integral, by

v (64)

from (46).

(ii) The nearest-neighbour interaction approximation
between groups is valid by (46), so that the correlation

of L' in (62) can be replaced by a correlation of L'.

(iii) The approach to equilibrium depends on the loss

of memory by relaxation, so that we can write

(e, =) % a(t,t—f) . (65)
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By these approximations, we transform the collision

(62) into

tow

' o . by .
e {£f = [0 dr (L &%, MU (£, t-T)L (t—t}{f°} ., (66)
where the scaling gives

AE+£) = £° . (67)

By the commutability

X'(t,x)2 = ¥ X' (t,x) ’ (68)

[ - - -t

we can write the correlation

@ e Wi ene e zh=) - (o eollie,e0x (@)

-~ w.

+ o 2@' (0 W (&, t=DN* (e=T)) (69)
and the collision operators

S - Gif e b o

in two components

t;{k___ E‘ﬁ;( ) i{} ‘ (71a)
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and

5 o= <23 (730)

with the diffusivities

(72)

) -
% L -/(; dt<X' (tlf)u(trt:r)f' (t:C)>

X

-
-

o —
%; =]0 de /N’ (t,ic)U(t,t-'C)r\l'(t-t)> : (73)

It is to be remarked that the auto-correlation of

L' = ®N' + X'+ 0 (74)
will entail the auto-correlation of X' and of N', while

the cross-correlations are negligible.

In conclusion, the kinetic equation (63) with the
collision (gg) will serve as a basis of a transport

theory.

5. Hydrodynamic equations of turbulence and cascade transfer

5.1 Kinetic form of cascade

The hydrodynamic equations (19) and (20) describe the
microdynamic state of turbulence. They were transformed

into a master equation as the starting point of our kinetic
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theory. By group-scaling and the closure by memory loss,
we derived the kinetic equation of turbulence (63). By
the moment method, we can convert the kinetic representa-
tion back into the continuum to find the hydrodynamic
equations of turbulence. as follows:

0 ° o

oﬂ
(Bt+v°-‘7-\>v2 +A)v =X + J (75)

- - -

and

]
Vev = 0 . (76)

-y ~y

It is to be stipulated that the macro-kinetic equation for
£° is an irreversible equation, and does not allow to be

reverted from f° into £ to generate higher-order groups

of moment, as did the reversible master equation for £.

The driving force is

0 ° oA o 0 1 9
X = E +Ae(u,withE_=.‘§'VP v (77)

and the hydrodynamic force due to the collision is

Jo =/dvv‘c,'ifo}. (78)

We have added the kinematic viscosity v.
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{70)-(73), we can write

By
(-] _ ] []
J = Jx + JN ' {79)
with
] ' 7]
Iy =fdz YCX{f (t-t)}
' 0
<[ ey v Bl ) 20
Jo = fdvvfl; £’
[}
2 ' L]
=t D v (81)

Upon multiplying by v°® and averaging, we get the

energy equation

° 0

1 02\ _ _ .f ° - 82
55t<\£ > =-1 +w —t‘( £, . (82)

We have assumed homogeneity and isotropy, so that

(v v p )= v (' - <p°V-Z_°>

(83)
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The production function
 _ o.gl\ ¢
W _<X A “v‘j_> (84)

and the damping function

9 A
¢ = ~(xv'?)
are originated from the couplings. The dissipation

function is

]

&= v{wvh?) . (86)

Finally the transfer function
4 o o
T - <;’-J )

- v'.fdzgz:{’f"}. (87)

]

i

-

It is the result of interaction between the macro-dustribution
and the micro-field fluctuations. It governs the cascade
flow across the spectrum.

The inertie turbulence is governed by

¢ (88) |

’

H
il
o~
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where the energy dissipation

° o
€ = (£y+€<)k=w

is increased by the drag a.

From the collision of two components (71),

the transfer function

of two components

Q9 ' 0
N ='fdl'<‘.' Ly By )

- - «2d S

and

0 o

TX = -‘/ dz<<v .
o

"/’dV’<V .

5.2 Fluid form of cascade

(89)

it entails

. (90)

(91)

(92)

From the scaling of the fluid equation (19) by A°®

and A’, we get the equation of evolution for the macro-

velocity
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°
= X

-

(3 +v° TV

-

The force of dissipation

° 0
Iy = -V-.av' v

0 0
Jy = ~« A N'vV' ,

These are due to the stresses

-A v' v!
|
* and
| °
i -A N' v!

from the micro-fluctuations. They
effects of the micro-fluctuations

the macro-momentum.

° 0
-ax v +vpdv® + 3° .

in contrast to the kinetic form given by (80)

(93)

-~ -

(94)

(95)

(96)

and (81).

(97)

(98)

represent the statistical

upon the evolution of

Upon multiplying (93) by v’ and averaging, we get the

energy equation in the same form as

(82), with the transfer
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function also in two components now in the fluid form:
e = (g v )
Ty =4(:°-Y. A N v (100)

in contrast to the kinetic form given by (91) and (92).

5.3 Transport of the gradient type and transport of the non-
gradient type

The flux (97)
0
-A v v' = Kés vou, (101)

for the transport of vi by the velocity fluctuation v% is
proportional to the velocity gradient Vsug. The transport
coefficient Kis is called eddy viscosity. This transport

relation was used by Heisenberg (1948) to represent the

force of dissipation

)
Je = K' v2,° (102)

— -

in the notation (95)ywjithgroups. It served to determine the

transfer function
g '] 2
RIS o
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The same relation for this transport of the gradient type
is called the Onsager relation in the thermodynamics of
irreversible processes. These phenomenological arguments
can not lead to the determination of the transport co-
efficient, for which a kinetic approach is necessary.
This is true for the eddy viscosity as well as for the

molecular viscosity.

By comparing (102) with (80), or (103) with (92), we

find the relationship in the form

, 2

‘G;= K'Y (104a)
and

23)’(= k"2 (104b)

between the collision coefficient and the transport co-
efficient, when they are independent of v, i.e. after the
memory cutoff. Therefore, this relationship identifies the
collisions in the calculation of the relaxation, and en-
ables the self-consistent determination of the eddy vis-

cosity.

On the other hand, the transés}t

o
v (105)
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unlike -A°v'N’, is not of the gradient type, as seen by

comparing (96) with (81).

6. Perturbations of the trajectory

The Lagrangian correlation

(x (t,f)a(t.t-t)x' (£=T)) =<>_<'(t,x)§'[t—t, k(e-T)]) (106)

is defined as the correlation between two fluctuations at
two instants (t,t - T1) élong the trajectory. The variable

position
A
(1) = x - vt - f) (107)
- - - -
consists of an initial position
x(t) = x , (108)

a free flight vt, and a perturbed path
3 N Y 109
/(7 vy = A ) + Lo . ( )
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By Fourier decomposition, we have the fields

X*'( t,x) =ﬁdu' @t x' (o xn eiorektx) (110)

X' [t-r,x(t-r)] - j f dg" &" X' (@",k")e 19" (£7F) Jik"-x(t-T) (111)

-t

and the correlation

(x (t,f)x-[t-r,i‘c(t-t)]ﬁfd o' /f da" A"(X(0" kX" " k)

it - '+ Xk oin vy, (112)

-

The orbit function is

h(z,k",v) = K"yt e-ﬁ:“.g(r)> ! (113)

by (111) and (107).

If the Fourier decomposition is made in an interval
of time 2 T and an interval of length 2 L in three dimen-
sions within which the field is stationary and homogeneous,
we can average (112) in time and space, integrate it with

respect to T, to obtain the diffusivity

(-]
D' =f d‘t"ﬁdu“ ax" ?‘TL(X'( " k")X* (—o",-k")> h(T X",V , (114)
X ‘o0 ¥ - =~ -7

as defined by (72). The factor of Fourier truncation is
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)(TL =¥(

tid

7. (115)

With a free flight in a frictionless medium, the

diffusivity

3x = chf ad" dii“ XTL<§| (QI: ‘}fu)}fv (-U',' }:")>S(d“-]f_".y) (116)

-y

has a resonance, as is common in linear instability. In
weak turbulence, the trajectory of &' is perturbed by &

smooth streaming from £°-fluctuations.

We deal with a strong turbulence by neglecting w"

in (114) and reduce it into the form:

\ tym
D =f d'cfdk" Q((X'(k")x'(-k")>h(‘c‘,k",v) , (117)
0 = - - . -~

where x = (7/L)? is the factor of Fourier truncation with-

‘in the interval of length 2L in three dimensions.

The orbit function (113) has a component
<e‘1’§ g (”? = fdf e'l]i '/_?p(-c,ﬁ) (118)

from the path fluctuation (1), and can be calculated by
means of the probability of transition p(t,%). A theory

of transition can be developed on the basis of a master
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equation by a method similar to the one presented earlier.
As a result, we will equally have a Darcy damping (8" to

represent the friction by the porous medium:

Slen, " c"t
<e1]5. ’g(”’> = e =h, . (119)

Analogously, we have

B S A L 4 . (120)

with ¢! = C': by the approximation of the nearest-neigh-
bour interaction. Finally, the coupling constant a enters

as an external parameter, giving

~<XT
/AR = e . (121)

By collecting (119)-(121), we find the orbit function

= (122)
h Q‘ h, hy ﬁi ’
with the following components:
omik"eVT
h,(t,k",v) = = (123)
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"
®

hD(trk") (124)

h, (T,k")

A

]
o

(125)

By (104), the last two orbit components can be written in

the form:

v2
exp(~-k K"T ) (126)

114

hDCt,k")

K]

B (Tk") exp(-k"zxz'v y . (127)

Note that £ =0, and that 2°(t) is neglected, because

the evolution operator
A
A'U (t,t-T) (128)

in (61) selects the micro-group by A'. It may play a role

of streaming,

The only component that represents the path-perturba-

—

tion is hgy(t,k"). It performs the physical role of relaxa-
tion for the eddy viscosity K' as a transport property to

approach the equilibrium at a self-consistent rate k"?K'.

£
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7. Cascade transfer by eddy viscosity

By (92) and (71), the transfer function T; can be

written in the kinetic form, as follows:

== far v (e BED
-]dz Y_-(vo(t,x) > -%;c{-b fo(t-T)}‘>

- fdx v %;{E fo(v,:f)}

- s -
-

1
i
&
x-
—A,
n
<
f g
o
N
~5
d
s

with

(ol ex)e Ty Y

- -

B S
.9
Ky

5 <
]

and

(129)

(130)

(131)

—— e < port—tne .

In Fourier form, we write

o
¢ (x,v =fdk')(<v°(k') f’(—k',v)> hc,k',v)

and

(132)
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0 /] g
¥ ‘f(r,V) =]d§' <v k') £ (-k'.V)>)2h('c',k',v). (133)

The differentiation applies to the fast varying function
h(t,k',v) and not to the slowly varying function f£°(-k',v)

-

as an approximation. In the same manner, we write

oo
= dri dk* <%'(k")x'(-k") h(t,k",v=0) (134)
o e[ e e e e e

from (117) and (128).

i &

By collecting (133) and (134), we transform (129)

into
®
9
Tx = '{d‘f/ -nx<}£| (}Sn)z{l (_}:n)> h(v,k" ,V=0)
9 o
X dzzfdg_'x(v &) £ RaNREE Y (135)
Here we have two orbit components

h(r k" ,wOﬂzh(T,k',v) = -k'z‘t'zh('r,k",v=0) h(,k',v) , (136)

- e L i~

The second component can also drop its v-

dependence after its differentiation by 3%, so that

h(v,k",v=0) h(r,k',v) % h(t,k",v=0) h(r,k',v=0). (137)

-~ - -~ - - -
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In the competition for the dampings, the second
component is ineffective, and can be approximated by
~

h(r,k',v=0)

- -

1l . (138)

By the use of (136)-(138), we transform (135) into
_ujdkux <xl (k")xl (_kll)>/dv T h(f k",V=0)

x/dlj' 23 - v

=K' R . (139)

By separating the integrals into two parts, we recog-

nize the vorticity function as

2 [dk, ! ,f< (k)v(_k)> (140)

- e —~—

and identify the eddy viscosity as

——— ——
=

_TA‘}'&(" }<xv (kn)xl (_ku)>/ d‘ r h('l',k",V"O) (141)

or as

K' =%'ﬂt2} . (142)
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Note that the diffusivity as a transport property

a
D' =fdk“7(é(' k") X' (-k")>_/ dt h(z,k",v=0), (143)
x el - - - 0 - -
by (117), can be used as operating on 12.

8. Eddy viscosity

We have derived the formulae for the transfer func-
tion T;, the eddy viscosity K', and the orbit function
h(T,EUXw=0), in (139), (141), and (122), respectively.
We show that the spectral evolution is characterized by
the eddy viscosity K'. This transport property approaches
its equilibrium by a relaxation process. The analysis of
the perturbations of the trajectory results in the orbit

function h(t,k",v=0).

From (141) we can distinguish two eddy viscosities:

K' = tr ] &("ﬂ Q' (.k-"){' (_El')) g (k")
(-
= % f &" G(k") (:; ") (144)
k "~

~
i

=t j a x<" (") (53 gx(k")

%[ k" G(k")? (k™) . (145)

k
L
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They control the cascade transfer and determine the relaxa-
tion, respectively. They are energized by the field fluc-
tuations of spectrum G(k"), and are characterized by the

two time moments:

3
?(k") - [ar v2 nteene0 (146)
0 - -
3 k") =f:c 2 h(k . (147)
] 0

The latter is the moment of h, in its role of relaxation,

in the form

D
9(1(") =/dt 12 exp(-k"X' )
/| 0 £
= 2 k"2 Kp - (148)

so that, by a substitution into (145), yields

(»0]
- 4 n " nzxu -3 (149)
K' == ak" GKk") (k ) .
£ 3k A

The eddy viscosity Kj, as appearing in both sides of (149),
is equally stationary and homogeneous since it is a func-
tion of k. By grouping them together, we simplify (149)

into the form

4 -6 h
Ky () = {—3- CCERE G(k‘“)] (150)

kll
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For the calculation of K', we distinguish between
the weak coupling and the strong coupling in the follow-

ing.

8.1 Weak coupling a< k"zK;L

In weak coupling we neglect a in (12%:.) and (146) to

get
" — 2 “2 ” " "
%(k) -/:dn acp{-k [k 04k, 1}

= 2 gk"z[x" (k")+K}(k")]} -3

IR

2 [z & e ]-3 :

1 (151)

We note that by its higher order in the group, K" (k") 1is
qualified to play the same role of relaxation as does

Ki(k"). Use of (126) and (127) has been made.

It is not difficult to demonstrate the relation

l_ll
K-Zli (152)

by differentiating the two eddy viscosities (144) and

(150) and by comparing them.
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8.2 Strong coupling k"zKi<< a

The calculation of G(k"), as defined by (146), is

more involved. The function has two time scales

x 1 and [k"z(x' 4" ] -1 (153)

to distribute. As an optimization for fast approach to

equilibrium, we write

Tro

a
xXT
k" ___f ar - [dl ' _knz "n ’ " 4 ,
9() J e [ar v ew [K(k)+K1(k)]-c} (154)
or
-2
" _}_ w2 " 1en ' "
?(k)-o({k [ K" (") 4K, (k))}
= _L [2}("2 Kl (k") ]‘2 (155)
& 2 !

when K" joins with Ki for the relaxation process by its

qualification of belonging to a high-order group. The
upper limit T of integqgration in (154) can be put to «

in view of the condition

«» k"zlf" . (156)

Upon substituting (155) into (144), we find

1-41



@O
K = 2.[ a&" x4 G(k")[ZK' (k")]"- . (157)
I Tk {

1

The proportionality a™' £fulfills the Einstein condition

in Brownian motion.

9. Equation of state relating pressure and velocity fluctuations

The transfer functions T; and T; as obtained in (91)
and (92) depend on N' and 5', respectively. For T;, a
relation between §' and v' is needed. It is a kinematic
relation without involving dynamical processes and is
called the equation of state. Since T; describes a
momentum transfer at the exclusion of the density fluc-
tuations, we can use the hydrodynamic equation (19) with
constant coupling, i.e. @ = a, as our basis of derivation.

By taking the divergence, we find the Poisson equation
V-E_: = r , (158)

with the source

~ M AN
r =VV:Avv
=VV:(\7;- ‘\'/'\7>). (159)

By Fourier decomposition, we transform the equation (158)
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for the E-field into the following equation for the inten-

sities, as

<E‘;'(k) .5(—3)) = x2 <’£o:) 'é(-}_c_)> . (160)

It is evident by (159) that the right-hand side will have
quadruple moments. These will be decoupled into products
of quadratic ones by the assumption of quasi-normality.
This is legitimate, since the equation of state deals
with a stationary, homogeneous, and isotropic state of

fluctuations, and notwith a dynamic process. We find the

pressure-velocity relation in the form:

2y _ 2 92 (161)
(?=38° -

The details of the derivation which uses the Fourier

method are omitted here.

For the sake of brevity, it will be convenient to

introduce the notation

= ]dk' k'2;<<w°o<')-w°(-k')> . (162)

. A A A .
with w= (v,u, ﬁ . We find

3 x>

RE" =<r\:2> (163)
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and

p;{‘= Ry + %2 R, (164)

from (160) and (22), respectively.
By substituting (161) into (163) and subsequently
into (164), we transform it into
o )
Ro= = ®R)Z+ o PR . (165)

By differentiating with respect to k, we obtain the

following relation between the spectra:
Go)= 2R’ F, () +% 2 F (k) (166)
9Rv v v “u ‘

This relation will serve in transforming the transport
coefficients %;( and K' that were written in terms of X'
into those in terms of velocities.

The functions G(k), Fv(k) and Fu(k) are spectral

densities, giving the spectral intensities:

Q
de" K<)£l (]:u) .El (_..")): Zj};dk" G&k"™) (167)
o -] k
j&fvx(\: (}l)oz (—1(')>= 2[0 dk! Fv(](') (168)
o . 9 ' k
fdk'?(é 0 -’ (K D= zfo &' F (" . (169)

1-44




10. Spectral structure of velocity fluctuations
10.1 Inertia turbulence with weak coupling

The inertia turbulence is governed by the cascade
flow at the constant rate of dissipation. If the coupling

is negligible, i.e.
]
v & kxo, ®HYY?, (170)

the two phases are separated.

The spectral flow is governed by
T, =XK'R =¢ , (171)

and is independent of a. The small-scale transfer is
chosen, because we are treating the range near the dissi-

pation end of the spectrum.

The expression (150) for the eddy viscosity KS'L in
terms of the spectrum G(k) of the field spectrum can be
converted in terms of the velocity spectrum F,(k) by the

equation of state (166) which is
~4 0 (172)
=3 R, (k) Fv(k)

G(k)

in weak coupling. We find
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' wy — 16 e |n-6 ° X " 1/4
I&(k) —%-;/]:dk k R, &"") F (k )] . (173)

This leads to K' by the relation (152).

By the use of the formula for K', the spectral

balance (171) yields the following results:

_ 2/3 ,~5/3 (174)
F,0) = 1.633 £ 23k
K! = 0.408 évl/3 3 (175)

and, by an interchange of indices v, u,

F (k) = 1.633 2u2/3 x~3/3 (176)
L 1/3 .-4/3
k! =0.408 € Y3k i (177)

The numerical coefficients are predicted analytically,

and are in good agreement with the best experimental

values.

The -5/3 law is identical to the Kolmogoroff law,

except the rates of dissipation €, €, are augmented by

the drag coefficients, by (89) . Such an increase has been found in

experiments, where the coupling coefficients are small
to satisfy the condition (179), but not so small as to

be negligible in (89) (Goldschmidt, 1972).
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10.2 Inertia turbulence with strong coupling

In strong coupling, i.e.

« » k% , ®&Y, (178)

the spectral flow is governed by equation (171), rewritten

as

0
TX,V = K; R, (179)

for the v-phase.

LY

The vorticity function is

k
o \2 . (180)
R, = 2[0 &' k'“ F (k') .

The eddy viscosity K, is given by (157) in terms of the
spectrum G, (k). It can be converted in terms of the spec-

trum F, (k) by means of the equation of state (166), which

becomes

~ 2 (181)
GVWQ = FUOQ

in strong coupling. We get

2« @

v -
K' = — dk* k"
v 3 K

4 " ' " =2 182
Rk [ 6] T2, (182)
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with

L
[] — l@, " 11_6 " " 1/4
KX'V —[27£ &" k" © R, k") F_(k )] (183)

by (173).

The system (179), (180), (182)3n3 (183) governs the
v-cascade. A parallel system governs the u-cascade, and
is obtained by interchanging Vv and 4. The two systems

are coupled.

By omitting the details of calculation, we obtain

the following results:

_ 2.1 (184)
Fv(k) = 11\;‘u£ k
_ 2,-1
Fu(k) —11\:‘v)‘r k (185)
. _ -1 2, =2
Kv = A‘ o v(ve /ué) k (186)
_ -1 2,2 (187)
KCI = Ay uu(u‘/vt) k
with the friction velocities
1/2 1/2
ve = (f 72w = (g a7 (188)

The numerical coefficient is predicted as:
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A = 8/{3 . (189)

The solutions can be obtained by a method of verification

using a power law spectral distribution.

11. Spectral structure of density fluctuations

The kinetic equation (63) is valid for density fluc-
tuations, by definition (35). By taking the zeroth moment,

we find the equation of evolution

(2 + v ' - vt vazn°+/ag g {fen) . aso

- . - -

Upon multiplying it by N° and averaging, we derive the

equation of spectral flow

PGt e i) FE -0
This is governed by the production function
-(N°3°)°V§. , (192)
the dissipation function
{193)

i; =% )2 )
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by molecular diffusivity v, and the transfer function
° o 0 .
@=-jdv Nc,;{f(t-ﬂ} . (194)
The transfer function
0 ° 8
= (195)
0 —(%{ +CDN
has again two components
-| av No C'{fo(t_t)} (196)
X - X
)
oty
~ N

@
I

®
=z
0

By the same procedures as were used for deriving

the velocity transfer, we find the components

D
|

1
. =k {wn)2) e

8] ()

®
!

for the direct cascade and for the reverse cascade, re-

spectively.

The inertia turbulence for the direct cascade is

governed by the spectral flow
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@; = K' <(v,n°)2)= & (200)

where K' has been derived in (152) and (183) for the weak
coupling and the strong coupling, respectively, and

eN=e§(k=°°).

We find the following results for the spectrum

Fy (k) of N,~fluctuations, as follows:
’

Fy,v) = 1.634 (& / 5v1/3) k"5/3, zero cowpling (201)

SN R : (202)
F, (k) = :?_.(u: strong coupling .
N,V ﬁ V:} NQIV ‘k ’
The parameter is
- 1/2 (203)
N{,v' (EN,x/"‘v) :

By an interchange of the subscripts v, u, we find

the spectrum Fo u(k) of ﬁu-fluctuations as follows:

1/3, .
FN,u(k) = 1.634 (iN,u/ £y )% 5/3, zero coupling (204)
_ 8 2 .,2 -1 . (205)
FN,u(k) —‘/:3-(\2 /uz) Ns,u k ~, strong coupling,
with
_ 1/2 (206)
N;,u = (GN,u /o(u)
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12. Summary and discussion
12.1 Criteria of chaos

A nonlinear dissipative system can be represented
by the equation of evolution in the form (real or com-

plex), as follows:

a7 A
Q. +Mm¥exn = xexn (207)
with
M=M +M
= +M 208
’e n,e ( )
7 o Pa)
= (209)
X= Xpo1r * Kext

~

where ¥ is an unknown random function (scalar or vector),
My is a non-random linear differential operator, and ﬁnl
is a differential operator that causes nonlinearity by
involving ¥ or another random function, linear or non-
linear. The driving force consists of the component iseLf
that is reducible to ¥ by a self-consistency condition,
and the component iext that is externally given and is
random. The hydrodynamic equations of two phases, the non-

linear propagation of light and of solitons, and the dy-

namics of neurons fall into this category.

The hydrodynamic equation is inhomogeneous and there

is an advantage in transforming it into the homogeneous

equation
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Qg +Dicxp = o (210)

of higher dimensions, called the master equation. The

differential operator is

4
+

x>
o/

L = (211)
with 3 =3/3y. The random differential operator M in (207)
is transformed into a non-random differential operator M
in (210). The field X that was a driving force in (207)

becomes the only random convection in (210).

By writing
f(tlxl\P) =g[\f/— Y(tlx)] (212)

and by taking the moment of (210), we recover the hydro-
dynamic equation (207) and show the self-consistency of

the master equation.

The hydrodynamic equation and the master equation
can serve to describe the microdynamical state of tur-
bulence. From the theory of universality of chaos, it
will be interesting to know whether such a system can
develop chaos and yigld a broad spectrum. The theory of
chaos is not yet able to predict the criteria. The hydro-

dynamical closure by the degeneration of high orders into
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lower orders can not find physical support. With the lack
of a small parameter in turbulence, the kinetic method by
Bogoliubov can not justify its closure. In our group-
scaling method, we scale the master equation into a
hierarchy of equations for the macro-group, micro-group,
and sub-microgroup, representing the spectral evolution,
the transport property, and the relaxation. The last
process is represented by a network of random higher-
order distributions. By the successive collisions, the
distributions in the network lose their memory, and as

an ensemble can be simulated by a porous medium which
then closes the hierarchy by a self-consistent condition.
The relaxation thus formulated makes the transport
property approach its equilibrium. Hence, the kinetic
equation is obtained. By the return to the continuum,

we calculate the transport coefficients, and determine

the spectral structure.

We find a direct cascade and a reverse cascade. If
one or both cascades can find their spectral balance
from the equation of spectral flow, the chaos can de-

velop into a broad spectrum.

12.2 Dusty gas

For a dilute suspension, where the particles are

not sufficiently dense to produce a pressure, such that
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Y, U » E, , (213)

we simplify the system (19)-(21) for the v-phase into

A v ye - 2 7 (214)
”t*X_V +°{v)z = X, 9
A A y 2/\
(Ve + V-VIN, = Yy J VN, (215)
with
A A (216)
“w =% Ny !

while we keep the system for the u-phase in the original
form (23)-(26). These two new systems consitute the

'dusty gas' model by Saffman (1962).

The spectral results for the dusty gas can be de-
rived by a degeneration of our general formulation, under

the condition (213).

When we further neglect the coupling in (214), we

obtain the Burgers equation

yv. = 0 (217)
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and the diffusion equation

(3 +3-Y -y sz)ﬁ = 0 . (218)

t

’

The treatment of turbulence on the basis of the homogene-
ous Burgers equation can be made by following the pro-

cedures related to the master equation.

12.3 Reduction of turbulence by the particles

The power law
' — -1 = =2
Ko T & ]‘ZE‘ k (219)

for the eddy viscosity has been suggested by Prandtl for
turbulent boundary layers with a mean velocity gradient
|va|. with this eddy viscosity and the equation of spec-

tral balance in the form
]
K' R, = t (220)
u .
we find the spectrum

(221)

~N

F (k) =A u, k
v Y

where u, 1is
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= =1,1/2 (222)
b T &gEPTT
and AY is a numerical coefficient. The power law (209)
confirms the earlier prediction by Tchen (1953, 1954).
This law has been observed in the atmospheric boundary
layers (Tchen et al., 1985) and in the tropopause (otten

et al., 1982).

It is interesting to note the analogy between (185)
and (221) that can suggest that a shear flow with the
combined effects of IYEI and a will have a reduced spec-
trum. This reduction can be seen from the lidar measure-
ments in the atmosphere before and after the rain

(Gurvich and Pokasov, 1972).

12.4 Equality of transport coefficients

We choose a strong coupling where the governing

parameters are a,, a . By the use of Prandtl's formula,

u

B
we write -
' - -2 (223)
K "lV = d'v k
and obtain
2 . -3
= x (224)
Fv(k) ﬁ‘ v k
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and similarly"

Fu(k) = A o(u k . (225)

of
The numerical coefficients are not determined in our di-
mensional reasonings. These spectral distributions occur

in a range where the transfer balances the production and

where a,, a, are the only dominant parameters.

We rewrite the formula (144) for the eddy viscosity

in the form

K!
viv

winv win

o
]k dk" Gv(ku)gv(kn)
L

Q@
2 [} ] " "
o ax k) %V(k ), (226)

and similarly

] - 2_ 2 " " n
K'ulv = 3 «u[dk F, (k") 9v(k )y . (227)

Use of (166) is made for strong coupling. The subscript

() denotes that the transfer coefficient is endowed

ujv
by the u'-fluctuations along the Q-trajectory, and ()i,
denotes that the transport coefficient is endowed by the
v'-fluctuations along the V-trajectory. Upon substituting

for (224) and (225), we obtain

1-58




’ (228)

confirming the equality (8) from the Langevin method.
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GROUP-KINETIC THEORY OF DISPERSIVE SOLITON TURBULENCE

C.M. Tchen
Department of Mechanical Engineering, City College,

New York, N.Y., 10031

As the fluid analogue, the nonlinear Schrddinger equation
has a driving force in the form of emission of solitons by
velocity fluctuations, and is used to describe the micro-
dynamical state of turbulence. In order for the emission
together with the modulation to participate in the transport
processes (spectral evolution, eddy collision, and relaxa-
tion), the non-homogeneous Schrddinger equation is trans-
formed 1into a homogeneous master equation. By group-
scaling, the master equation is decomposed into a system of
transport equations, replacing the Bogoliubov system of
equations of many-particle distributions. It is in the
relaxation that the memory 1is lost when the ensemble of
higher-order distributions 1is simulated by an effective
porous medium, The closure is thus found. The kinetic
equation is derived and is transformed into the equation of
spectral flow. The emission deposits the energy into the
spectrum for accumulation toward small wave numbers by a
reverse cascade with a negative eddy viscosity. The modula-
tion develops a direct cascade and the modulation collision

provides a fluctuation-dissipation for the drain. The spec-
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tral laws for the soliton energy are k'l, k'3, and k8 in
the inertia, coupling, and dispersion subranges, respective-
ly. The spectral flow determines the statistical criteria
for a nonlinear stochastic system to become chaotic. It is
found that the homogeneous Schriddinger equation cannot de-
velop strong turbulence.
I. INTRODUCTION
Many nonlinear phenomena in the continuous media exhibit
fast density fluctuations superposed with slow ones, and the fast
components have envelopes that fluctuate slowly. Such a modeling
is called the soliton formalism and is usually represented by a
homogeneous partial differential equation of the parabolic type,
called the homogeneous Schrodinger equation.1 This equation is
considered more appealing than the Navier-Stokes equation and has
been widely used in plasmas, optics, and fluids, including atmos-
pheric waves, gravity waves and sea surface waves. Unfortu-
nately, the numerical computations of the homogeneous Schrgdinger
equation have not found chaos and deemed it not suitable for
turbulence. From the hydrodynamical standpoint, the Navier-
Stokes equations for density and velocity can be transformed into
a wave equation for the propagation of density with a coupling to
velocity. Such a coupling is known as the production of noises
by turbulence or the emission of solitons by velocity fluctua-
tions, and must be represented in the Schrodinger equation to
make it self-consistent with the Navier-Stokes equations. The

fluid analogue of solitons, i.e. the derivation of the
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Schrodinger equation from the Navier-Stokes equations, has been
treated by several authors.2-4 It is found that for the
Schrodinger equation to develop turbulence, the emission must be
present. Hence, it is not justifiable to conclude that solitons
cannot coalesce or break by <collision on the basis of the
Schrodinger equation truncated to its homogeneous form. The
dispersion in the differential form ve s important, without
which the partial differential equation of Schrodinger would be
reduced into an ordinary differential equation in the class of
Duffing oscillator,

As the scope of treatment, we consider the non-homogeneous
Schrodinger equation to describe the microdynamic state of soli-
ton turbulence, and transform it into a homogeneous master equa-
tion (Section II). By a scaling into groups and by the loss of
memory in the relaxation, we find the closure, and derive the
kinetic equation of turbulence (Section I1II-V). By taking the
moment we obtain the equation of spectral flow. By the emission,
the energy is deposited into the spectrum, to be accumulated to-
ward small wavenumbers by reverse cascade and transferred toward
large wavenumbers by direct cascade. A transport theory deter-
mines the eddy viscosity (Sections VI, VII). The equation of
spectral evolution is solved (Sections VIII, 1IX). The group-
kinetic consideration of spectral flow determines the criteria
for a nonlinear dynamical system to develop chaos and turbulence

(Section X).
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I1. KINETIC DESCRIPTION OF THE MICRODYNAMICAL STATE OF SOLITON
TURBULENCE

The nonlinear Schrodinger equation
(i3, +v 9% - 39 RE = X (1)
for the soliton field E(t,x) under the driving force X(t,x) has a

nonlinear modulation by the density fluctuation

No= -« ROJEIZ (2)
. . 2
and a dispersion by vn v , where vn ’
Un and & are Tteal constants, having the dimensions of

viscosity, frequency and the inverse square of acceleration, res-
pectively. The driving force is real, to be specified later.

The random field

~ ~

E =E +E (3)

had ad

can be decomposed into an ensemble average E

<E> and a

fluctuation E. The operators

Fal —-—

A

A+ A (4)
can be used, where i = 1 is a unit operator, and
A=1-A (5)
is the deviation from the average.
In the following, we assume homogeneous and isotropic turbu-

lence in three dimensions, without mean field, i.e.

E = 0. (6)

By the distribution function
F(t,x,E) =S[E - E(t,x)], (7)

the Schrodinger equation in the physical space t,x is transformed
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into the master equation
~ A
(3¢ +1) f =0 (8)
in the phase space t,x,t. Here E is an independent variable, as

"

distinct from the function E(t,x) and

~ ~ ~
L = Lv + LN + Ly (9a)

: 2
va -1 \)nV (9b)
IN =i 49 N (9¢)
AL' = o1 ')Z.B d
X i X0 (9d)

are called differential operators, with

%o /2L, 2 =d)HE. (10)

It is not difficult to verify that the moment of (8) reproduces
(1). The kinetic description (8) has the definite advantage over
the fluid description (1) by being homogeneous. It is also the
only logical way of developing a transport theory of spectrum-

dependent eddy viscosity.

The spectrum Fp(k) gives the field intensity
k= ~ 2
o ekt Fpoe) E°D (11)

It is defined by the Fourier transformation

Fek) = 2 k% —1— /dﬁ e Tk, ) Fx-D 1>
(2m) - ~ - e - (12)
of the correlation function

45'(t’x1).g(t’x2‘?= jj d_E_ldEZ ..E.IEZ <F‘(t,51,51) ?(t.fZ,Ez)b

= J[ GE1dE, Epfp Tip(tixEpstix, By (13)
through the intermediary of the pair-distribution function

o’y ~

Thus the determination of this spectrum becomes a problem of the
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many-body statistical mechanics, involving a hierarchy of distri-

bution functions.5

Alternatively, by considering a finite upper limit of inte-

gration k in (11), we get the spectral intensity

2{kdwFka =<@ﬁ2x (15)
from which we find the spectrum FE(k) by a differentiation with
respect to k. This method deals with the singlet -distribution
function, or the moment

E°(t,i) =~[ dE £ fo(t,xl,E), (16)

or the energy T

e’ 2> =~[dg B(k'?t,x) f°(t,x,Ej>, (17)
without invo;ving the p;i;-ézstr{;ution ;;'}as with the Bogoliu-

bov method in (13) and (14).°

The macro-group Eo is a component of the decomposition

£ = Eo + E, (18a)

-

The micro-group

E' = E! + Ev (18b)

is re-decomposed into a first-order group El and a subgroup

E" = E(Z) + E(3) + ... (18C)

which comprises all the remaining higher-order groups. Likewise,

we decompose the distribution into:

t =F+ 7 (19a)
F=1"4f (19b)
f£'= £l 4 ¢ (19¢)
foo= £(2) 4 (3 4 (19d)
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The operators

A, AY, A" (20)

can be used for scaling into the macro-, micro-, and sub-groups,
respectively.

By the nonlinearity of the master equation, £0 will be
coupled to f', and subsequently to f", in a sequence of equations
of transport. Hence the present group-kinetic theory deals with

the many groups

£ fe g (21)

of the singlet-distribution function, while the Bogoliubov theory

deals with the distribution functions of many points:5

f(t,x,E) (22a)

Flaltuxg Epit,xg,Ep) = KTt x, BTt xp, Bl (22b)

The three groups (21) represent the three transport proces-
ses of spectral evolution, eddy viscosity, and relaxation. The
closure is not based on the decreasing magnitude of the groups
but on their decreasing coherence with correlation times

Te> Te> Tg (23)
such that the memory-loss in the relaxation makes the eddy coef-
ficient (e.g. eddy diffusivity) approach its equilibrium and be-
come adiabatic. This adiabaticity is not present in the high-order
closure of distributions or of moments.

I11. DERIVATION OF THE KINETIC EQUATION OF SOLITION TURBULENCE
By applying the scaling operators.i, A., Al, A(Z), we
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transform the master equations into the following equations of

groups:
3+ AT = -2 L'f (242)
e A= - °F - A"t ol (24b)
(e Al Dol = L1 s £ - AlL@)2) (24¢)

An operator (e.g. scaling operator, differential operator, col-
lision operator, and evolution operator) applies to all functions
which follow.

In the right hand side, we find the collisions from the

fluctuations of the higher-order nearest-neighbor group:

SR U fr oAl T - G{?} (25a)
R N WL IE R b (25b)
Al L()6€2) 2 o plpugn o pugl (25¢)

as related to the adiabatic (non-fluctuating) collision coeffi-
cients

C, %, g (26)
to be determined by a transport theory in Section VI. This
transforms (24a) and (24b) into the kinetic equations

Oy + A7 = - G{Ff) (27)

(, + A1) = - L'F o+ ‘c'{f°} (28)
for the probability function F and the macro-distribution ft res-
pectively. In the following we shall deal with the kinetic equa-
tion (28) only. The governing collision coefficient and its
relaxation are determined by the system of equations

Oy + Al el = - 11T 4 ) +0re? (29a)

and
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(bt + A"l)f" = - L(Ff + %+ £ly,

(29b)

The function within the brackets {} is operated by the collision

coefficient in the role of an operator for the propagation of

memory.

IV. EQUATION OF SOLITON TURBULENCE

By taking the moment of the kinetic equation (28),

the following equation of soliton turbulence:
o

b

(3 - iv, 9% +itw aANHE = - o+

with the stress
0 4
J =z jdEE AR LA
A subsequent multiplication by Eoyand an average give
tion of spectral evolution
+ O R 0
éBt <IE 12> =W - T

in homogeneous and isotropic turbulence, where

0¥ °

¢ o .8
W o= -3[i<x - E > -i<X « E >]
is the coupling function, and
] ow

[
- JE . 9

] de E \g’{(l£°*(t,x)f°(t--u 1>}

is the transfer function. The Lagrangian correlation

T

i

QE™t,x)f (t-T)|>

. /
contains a memory, Since G is derived from

with

Ly =3 9 N', Ly = ixnd,

we derive

(30)

(31)

the equa-

(32)

(33)

(34)

(35)

(36)

(37)

by (9), the collision coefficient can be written into the two
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components

e{) = il + Sx{} . (38)
as due to L; and E; , respectively. Similarly, we have
e = 6n ot G . (39)
From (31) and (34), it entails
0 0 o
ﬂ = EN + EX (40)
T4 =Ty Ty, (41)
with
] P 8
. £
Iy = JoE E By {7} (42a)
] / 0
Jx=de§Cx$f} : (42b)

V. LOSS OF MEMORY IN RELAXATION FOR CLOSURE
The equation of evolution (29a) for f1 is controlled by the
collision
C”{fl} , (43)
and is transformed by moment into an equation of evolution for El
with the controlling stress
ot = JeEE gt {fl (44)
in analogy with (31). An effective collision would be
gr  (t,x) fl, (45)

giving

4

reteo Jor e o
Bq; (t,x) El(t,x) . (46)

The collision coefficient that operates on f1 §n (44) keeps

g1

Al

a memory by its dependence on E. If we wish to lose the memory

in the relaxation, it suffices to suppress the E-dependence, cor-
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responding to the fluid simulation

e (t,x, B4}

nt

t;"(t,x,E=0)

= Cylt,x) (47)
since )
L*(t,x,b = 0) = Ly(t,x) (48)
by definitions (9a) - (9d). Hence we approximate (44) by
aE
= eRtx) Bl . (49)

Upon comparing (46) with (49), we identify
Cogelt, x) ﬁﬁ(t,i). (50)
A fluid s1mu1at1on can be conceived if the diverse distribu-
tions in the subgroup (19d) undergo a large number of sub-
collisions, so that the subgroup as an ensemble behaves like a
porous medium without individuality from the separate E-depend-
ence. The porous medium offers a Darcy coefficient ‘ﬁ;.

With this approximation, we reduce (29a) and (29b) into

YTy ST2 RS YR A (51)
ane (}t + A" IN)f“ = - L (F + el (52)
The d1fferent1a1 operators
A {:- 1 - ey , (53)
Ly and i govern the evolutlon operatorsy, Ug»U, as follows:
({+A1»C)u(tt = 0 (54a)
(3 + A" Ly) Up(t,ty) =0 (54b)
( }t + A'i)v(t,tl) =0 . (54c)

We conclude that the sequence of transport equations (28),

(51) and (52) for the distribution functions



£, f1, v (55)

forms a closed system.

VI. COLLISION COEFFICIENTS
A. Darcy damping C% and collision coefficient igN-

The equation (52) for relaxation can be integrated into
t

£ = -AY AT U (t,t-T) Ly(t-T) (F o+ £+ £y, (56
0

by means of the evolution operators (54b). Upon multiplying by

L% and scaling by Al, we find the flux in the form

t
- 1, wen = 1 " " u 1

ATLLS A/(; dt LN(t,i() A" Up(t,t-TILE(t-T) (F+f+f7), (57a)
or in the adiabatic form

1 tr ) 1
~AtLNEN = jd‘c <L’ t,x) A" U (t,t-T L (t-T)> f

N , N( X N( . ) N( )
='C§ £l (57b)

Hence we derive the adiabatic coefficients

@
Ty a‘f dr <LY (t,x) A" Up(t,t-7T) Ly (t-T )
A |
- . 2 14
(4 w )¢ Dy (58)
and
(20]
DY =,[ dT CN'(t,x) A" U (t,t-T) Up(t-T >, (59)

0
B. Collision coefficient @;

The procedure of calculating gy from (51) by restricting to

Li is analogous to that for @%. We obtain:




t -
by =fet <y iy AU (t,t-T ) Li(t-T )
- - )2 DL (60)

oo
D;q =f0 dT <N'(t91) A ‘LeN(t’t_T) N' (t-T )>. (61)

C. Collision coefficient C'

The 1ntegrat1on of (51) by restricting to L1 gives

[G,Alwtt-cul(f»ff) (62)

Upon mu1t1p1y1ng by L& and scaling, we get

* 1l
-A Lgf

Q/dx Ly(t) AL Rt e-T) Ll (t- -c){f i T
Adté (t) A’ M(tt-c)L (t- ‘c)>{f+f}tt
GoAf° (t- 7)Y . (63)
The adiabatic coefficients are found as follows:
r:x.” =£a;-c <Ly () At UL, t-T) L;ét-r»{}
on T 2 %21} (64)
12)-( =j0 dT <i'(t:i) A UL, t-T) }_'(t-‘c)> . (65)

e

The coefficients

‘fi(t,x,E) and D%(t,x,E) (66)

are operators and generate memory.

VII. TRANSPORT THEORY
A. Direct cascade T;

From (34) and (42a), the direct cascade is written as
[}

™

- [ e gy By <IEF(E,Of (t-T)]>
- 65 <lE’ 1P, (67)

nt
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The collision coefficient

‘CN' <0
is negative by (60), and is not an operator since it is indepen-
dent of E. The direct cascade performs a transfer toward smaller
scales.
B. Reverse cascade TX

From (34) and (42b), we calculate the reverse cascade in

the form

Ty = -de 5 g {IE V(=TI ), (68)

- X
or
- [ e E,-a.ri'x.}§‘€°(f)} : (69)

It contains two Lagra;g;an correlations: one is the auto-correla-
tion

e, 0a U, taex (t- T > (70a)
of the micro-fluctuations 5' by definition (65), and the other is
the cross-correlation

Yoty = <|E°*(t,5>A‘U(t,t-T)f°(t-1:)|> (70b)
between E°¥(t,§) and £ (t-T).

By Fourier transformation, the correlation (70a) and the

diffusivity (65) can be written in the form
X x) AU (E,E=T )X (E-T )> & <X (t,x) W(t,t-THX (t-T )>

dk" X <X'(K") X'(-k")> n(T,k",E) (71)
2 jdk" ;(x-(k")x (- k--)>_[ 4z :1(1: k", E), (72)
by using the orbit funct1on

ne, ke E) = UL, t-T) (73)

that is equivalent to the average evolution operator in the
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Fourier form. The Fourier transformation is made with respect to
position in a length interval 2L in three dimensions within which
the function 5' is quasi-homogeneous, resulting in a factor of
truncation

Xz (T/L)3.
The transformation with respect to time is not necessary, because
the temporal fluctuations are slow as compared with the spatial
fluctuations in strong turbulence. The transformation with res-
pect to both time and position would be necessary in weak turbu-
lence to establisn a resonance.
C. Subdynamics

Note that the Lagrangian function can be written in the

form

U, t-T X' (t-T) = X'[t-T, R(t-T)], (74)
where z(t-T ) satisfies the subdynamics of the detailed

trajectory, as governed by

() = Eep) E(t)) = - i§(t1> , (75)

with the initial conditions at time t

N
x(t) = x, x(t)=0, E(t) =, (76)

and with t, = t.T . By analysing the trajectory, we find that
the orbit function
h(t"i"’g) = hE(T’E,“’E)hQ(T’E“)hD‘T’E")h) (T"E") (77)

has the following components
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b (T ,k",E) = exp(-#ik"™ E t2) (78a)

hv(t,k") = exp iku22;t {(78b)
hp (T, k™) = exp b;‘t » (78c)
h£(13k") = <exp ik", f (T)> = exp7§Nt . (78d)

They refer to the streaming by E for the memory propagation, the
dispersion by vn, tts Darcy damping &;, and the Landau damping by
path perturbations I(T). The average in (78d) can be calculated
by means of a probability of transition ra(v,g) for the random
pathg travelled during a time interval T. The probability func-

tion satisfies an equation of transition with a damping rate

Gy -

By definition (65) or (72), the diffusivity is energized by
<KX'X'> for a duration of correlation that is determined by the
evolution operator in the detailed fluctuating form or its aver-
aged approximate form, through which the memory can propagate and
be stopped for the ciosure and for the adiabaticity of the dif-

fusivity. With this regard, we have represented the transmission

of memory through E by the orbit component —ﬁE. Other factors

(the fluctuating ¥ , the E-dependent probability of transition )

may cause the memory to continue further, but are suppressed for
closure.

D. Reverse cascade by negative viscosity

In analogy with the auto-correlation (79a), we write the

cross-correlation (70b) in the form:

(4
PieTy = [dkr X QED (k) (ke EXD> nEw,kLE). (80)

The orbit function 4(T,k',E) has the same structure as (77).
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We collect the results (72) and (80) and transform (69) into
0 ot ,
TX:‘/O dT/dE E]/dli ‘X <Xr(E )xs(-E’)>/dE Hrsi(t’i ’il’E)’ (81)
with

[ P [
H (Tyke ke E) 2 8 Dn(r, k" ED_ACLEY (k') f (-k',E)|> n(z,k',E)].

Trsi1 -— - - -~ - ~ -

(82)
The two orbit functions
h(T,E",E) and h(T,t',E)
govern the small and large scales, respectively. They compete
for the role of memory propagation by E. We attribute this role
to the large-scale orbit function , by writing

<) h (T, k' E) = - 3 k'k'vd n(r,k',E)

[ .

(124

- % ki ©d (83a)

e

hi(t,k",E) h(z,k",E = 0). (83b)

When the memory propagation is terminated, other roles (disper-

sion and dampings) are taken over by h(wT, k", E = 0) in view of

L

the condition k'<<k". These considerations simplify (82) into

[/
Ho ot k' k", E) =-h(T,li",E=0)ikr'k;'C4/<|Ei°(_l§") f°<—x_<_°,§>|>, (84)

e e -

and subsequently (81) into

T; = - jdk")’ <X|(k||) xl(_ku))
X fdk ke ok i/drt“ h(T, K", E<0)
xfde E; X<|E°(k)f(k' E)1>. (85)

After integration with respect to E and rearrangement, we obtain

o= -trace [dk" X <KTKIX (KL T (M5 R

0
= - K'Rg
Here the vorticity function is

Re = fdk'k'z X <1 k2>

w“
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Kqp 2
= 2 dk'k'“F(k"), (87)
| E
the relaxation time is Tx(k"), such that
[-~]
(T x(k“)]5 = rea]b/ dr 4 h(T,k",E=0), (88)
0 (S, -

and the eddy viscosity is

K' = trace \/dk"}( X'(k") Xu(_‘in)>[-cx(ku)]5
- 2 o n 1" 1] 5
- gjk dk"  F (k") [T, (k")15, (89)
The spectral functions are FE(k) and Fy(k), such that
0
<€ |2>=2fkdk'FE(k') (90)
- 0
<X*2> = 2 fKdk"F (k™). (91)
2> -2 fkakeFy

The transfer at a negative transport coefficient -K' indi-

cates a reverse cascade.
The relaxation time F*(k"), as defined by (88), is calculat-

ed by (78c) and (78d), as follows:
(- 2]
[‘T-'X(k")]5 = i/dt‘ 4 exp (- Cﬁ - €N)
0
= _ywen _ -5

6( EN €N) . (92)
Upon substituting (92) into (89), we obtain the eddy vis-

cosity

@
K!' = 4j( dk" F_ (k") (-G"-ﬁN)'S. (93)
K X N

E. Coupling function

The coupling function, as defined by (33), can be inter-
° [}
preted as the flux of transport of E by X =~ fluctuation. Upon

integrating (30), we write

0 0
E = -i/ d= A’U(t,t-t) X (t-T). (94)
Upon multiplying by iX and averaging, we determine the coupling

-

function
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[
W= 3D,

- fdk"/y<x'(k')-x°(-k-)>) dt h(c,k',E=0), (95)
-~ ~— L] - - 0 — -
with
o _ p?
DX trace X, (96)

e
~

by (72). The evolution operator W absorbs the damping effect of

¢ 0
JN from J in (30).

-

o
The orbit function that belongs to the trajectory of E is
h(T"i.l ,E:O) = exp (ik'zs)n + EN + ’GN)‘L' (97)

by (77). A integration and a substitution into (95) yield
0

= k ] ) ’ -1
W 2f0 dk' Fy (k') (-& -ty) Ytk 7k, ). (98) (98)
The function

¥

, = Real [1 - i(k'/kv)zl'l
[1 + (k'/k‘;)“rl (99)

regulates the dispersion at the cutoff wavenumber

kK, =[-8y - Cy /v, 2t (100)

VIIT. MECHANISMS OF SPECTRAL EVOLUTION

The evolution of the spectrum is governed by the transfer
function T; for reverse cascade, the coupling function W', and
the transfer function T; for direct cascade. Two types of
nonlinearity enter: the modulation by N and the emission by 2,
The spectral flow, as described by (32), involves cascade
coupling, source and drain,
A. Modulation and emission

It is to be recalled that the soliton formalism was derived

by a fluid analogue from the Navier-Stokes equation for
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compressiblie fluid, by considering a density fluctuation of two
scales. The stow density wave is related to modulation in the
detailed form (2), or in the form of intensities

N2> = &2<Er 2502, (101)
This relation is called the equation of state. The fast density
wave obeys an equation of wave propagation with the emission
caused by velocity fluctuations. By an envelope transformation,
the wave equation is transformed into the parabolic equation (1),
called the Schrodinger equation for driven solitons, with the

~

driving force X, such that 6,7

X ~ A VUV .0% (102)

- - -y

v .
The propagation of finite sound wave and the excitation of
acoustic turbulence are based upon the sawtooth shock wave
formation having the time '5 as an invariant. This time is
obtained by the effective slope in the propagation of a
fluctuating velocity in the X- space. With this invariant as a
parameter and by dimensional <considerations, it is seen the
velocity fluctuations follow the spectral law
F ) ~ k=3 (103)
It follows, from (102), the spectral intensity
<£'2> =T_"6k-2 (104)
for the driving force. For the determination of T, ., see Ref. 6.
B. Instability as a source
At the larger-scale end of the spectrum, the reverse cascade
accumulates the energy from the micro-fluctuation into the

macro-fluctuations, to be ultimately balanced by the instability
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of soliton waves as a source in the form

€ = 3 }4 <|E|2>, (105)
so that the governing equation is
0
£E = - TX
= K'Rg in inertial subrange, (106)

from (86).

At present, we shall not examine the spectral composition of
the source; however, it would be required for analyzing the
wave-turbulence interaction in the non-universal range of the
spectrum.

C. Fluctuation-dissipation as a drain

A  nonlinear random system <can be dissipative. The
dissipation can be prescribed by an external parameter, such as
the molecular viscosity. A "fluctuation- dissipation" can be
induced by density fluctuations and serves as a drain in the
spectral flow. Qur soliton formalism finds a drain from the

fluctuation-dissipation.
0
The transfer function TN would play the role of a direct

cascade in classical fluid turbulence, transferring energy from
/

o . . . .
E into eNand finally down to the molecular dissipation. With
the absence of molecular dissipation in soliton turbulence, the
transfer function becomes a drain itself, by writing
’ ~
8, ¥ &, . (107)
to balance the larger-scale coupling function W . The governing

equation for this coupling subrange is

0 0
W - Ty =0, (108)
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from (32). The approximation of the scaled collision coefficient
into an unscaled drain simplifies (67) into
0 ~ 0
Ty % - tk<|5 12> (109)

and (98) into
0

W = (_ZCN)-I Zékdklf.‘x(kn) ’bw(kl/ky ). (110)
Here\hq is defined by (99), with
- 3
k, = [(-28) /v, 1%, (111)

from (100).

It is to be remarked that the structure of the collision
coefficient CN can be calculated from (60) and (61) for the
determination of the probability function ?kt,x,E) by (27).

Since now Ch serves as a parameter, its explicit structure is

not needed.
D. Spectral flow
By the use of (107), we reduce the equation of evolution

(32) into

t 0 (4 o

E= - K +W- Ty
2(-2C )5 <X'2> %/kdk k12 F e(k")
(28, )-1 2/ dk' f (k') LA
+ 8y <IE 125, with t’ < 0. (112)

+

This integral equation will be solved in Section IX.

IX. SPECTRAL STRUCTURE

A. Inertia subrange

The inertia subrange is governed by the constant reverse

cascade as described by the following integral equationt
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£ = z(—zt&)'5 <x' 2> %ékdk'k'z Fe(k®), (113)
from (112). The solution for FE(k) is found upon dividing by
<X'2> and differentiating with respect to k, in the form:

_ 5 -1

Feak) = (=28t ) T k™0, (114)

Use of (104) has been made. It follows from (101) and (114) the

density spectrum:

Fu(k) =« QE2> (2B TSt g k7 (115)

We can introduce the notations
W = (28Tt (116)

- - 7- 5 -1
k. [( 2€NTS)-ts €.17°%, (117)

to scale the magnitude of the driving force and the source EE, In
these notations, (114) and (115) become

Fek) = dat ke-2k71 (118)

Fy) =x2<En> @b kil (119)
An integration with respect to k yields the intensity of field
fluctuations

<|EW2> = 4 dékgz,ﬂMk/&), (120)
and <N'2) is given by (101).
B. Coupling subrange (k /k,, <<{})

The coupling subrange follows the inertia subrange at larger
wavenumbers., From (112), we write the spectral flow in the form:
(-ZfN)‘IZfO“dk' Fole) Fezkg) + By 2ffekt Feky =0, (21)
The approximation

¥, (k/ky) F 1, for k/k,<< | (122)
will be made. Upon differentiating with respect to k and by the

use of (104), we solve for FE(k) in the form
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Fek) = ad k™, (123a)
or
<JE'I%> = aa&f K2 (123b)
where ¢p is given by (116).
From (101) and (123b), we derive the density spectrum
N2y = (aw g2 k8 (124a)
and the spectral intensity
Fy(k) = (Bvdg)2 k75 (124b)
C. Dispersion subrange (k/k, >> 1)
The function for the dispersive cutoff is given by (99) in

the approximate form:

' ~ ' 4 '
Vo (K'7k,) % (k' 7k, 0%, for ki/ky >> 1 (125)
Upon substituting for (125), we solve (121) to find the
spectra
Fe(k) = 2 (k) ® k77 (126a)
Fy(k) = 3 [w (k0?2 k13 (126b)

and the intensities

<\E')z) = % (k0 E)“ K6 (127a)

&%

1 442 =12
[gu(k’uE) ] K . (127b)

A1l the spectral results indicate that the spectra are

increased by the driving force through the parameter a)E and by
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the instability as a source through the length parameter kz‘l.
X. DISCUSSION ON THE CRITERIA OF CHAOS
A nonlinear dynamical stochastic system can be represented
by the equation
Qg + 1, + ALPEE,x) = Y(t,x). (128)
Here f(t,x) is the unknown random function without average, i.e.

[

(6). The advection consists
of a non-random linear part L,and a random part Ly that causes
nonlinearity by being related to E(t,x) or being another random
function. The driving force E(t’f) may be of an external origin
or be self-consistent with E(t,f). A1l the functions may be real
or imaginary, scalar or vector, on one or more dimensions. Many
stochastic problems in hydrodynamics and optics can be described
by this stochastic system. For solitons, the nonlinear
Schrodinger equation (1) is identical to (128), by writing

Y - -iz (129)
and by using (9b) and (9c) as differential operators.
The Duffing oscillator

m‘i + (e -Bx%)x = Y, (130)
with constant coefficients m, 6~ , and p , 1s reducible to the

cubic equation

(13 Y- 3 vANE = X (131)

by an envelope transformation, where N is given by (2), and 72 b

are constant coefficients. The Korteweg-de Vries equation

3
(¢ +u%;+x%;? +ylu=0 (132)
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can be considered as an alternative to the Schriodinger equation
for long waves. Here ) and ¥ are constants.

A large amount of numerical effort has been devoted to
calculating the soliton models, and found that the simple ones
that are analytically integrable cannot develop chaos. This has
lead to the belief that an integrable nonlinear equation cannot
develop chaos, as exemplified by the Schrodinger equation, the
Korteweg-de Vries equation, and the Burgers equation in their
restricted form. This conclusion seems to be direct, and calls
for the need of a causal relation between chaos and existence of
solution, or for a statistical reason why certain dynamical
properties are necessary to produce cascades and maintain a broad
spectrum,

The statistical theory as developed here may clarify to some
extent this problem. As the starting point, we consider the
dynamical equation (128) to describe the microdynamic state of
turbulence. The equation has the difficulty of being non-
homogeneous, with the consequence that the driving force will
cause a hierarchy of high-order moments and is hindered to
participate in the transport processes as does the nonlinear
operator. To 1ift this hindrance, we use a kinetic method by
raising (128) to a high dimension, and transform it into the

master equation (8). The nonlinear operator then becomes

L o=, +1y+ 1y, (133)
with
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The group-kinetic method derives the kinetic equation of
turbulence and establishes the spectral flow in the form (112).
The governing transport functions are the coupling functions w',
the transfer function I; for the reverse cascade, the transfer
function T; for the direct cascade, the source £f and the sink €.
The notation (129) for the solitons is followed. The solitons
gain energy from the pumping Zf into Ef by an amount w°. The
energy deposited is accumulated toward the small wavenumber end
of the spectrum by the reverse cascade To and is transferred

X

toward high wavenumbers across the spectrum by the direct cascade
0
Ty. At this end of the spectrum, the transfer function

¢ /it 2 X ° 2> 135
Tyz - ¢RlE 12 ¥ - BqE |2 (135)
serves as a drain in such a way that a collision coefficient is

found and plays the role of a "dissipation" induced by
turbulence, called "fluctuation-dissipation." The energy balance

between the reverse cascade and the instability on the one hand,

and between the coupling and the drain on the other hand, even when

the sinkig is absent, determines the two subranges and provides a
broad spectrum of turbulence.
If the soliton dynamics 1is described by the homogeneous

Schrodinger equation, i.e. i = 0, the spectral flow is governed

-

by the direct cascade

) °
)t<|E°|2> z - TN s With TN7 o . (136)

The cascade can not find a dissipation to complete the transfer,
except in a decaying system, i.e.
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3t<|ﬁ2> > 0,

The statistical

criteria of chaos.

considerations above help to determine the
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